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B cells are associated with survival and 
immunotherapy response in sarcoma

Florent Petitprez1,2,3,4, Aurélien de Reyniès4,24, Emily Z. Keung5,24, Tom Wei-Wu Chen6,7,8,9, 
Cheng-Ming Sun1,2,3, Julien Calderaro1,10,11, Yung-Ming Jeng9,12, Li-Ping Hsiao7,  
Laetitia Lacroix1,2,3, Antoine Bougoüin1,2,3, Marco Moreira1,2,3, Guillaume Lacroix1,2,3,  
Ivo Natario1,2,3, Julien Adam13, Carlo Lucchesi14,15, Yec′han Laizet14,15, Maud Toulmonde14,16, 
Melissa A. Burgess17, Vanessa Bolejack18, Denise Reinke19, Khalid M. Wani20, Wei-Lien Wang20, 
Alexander J. Lazar20,21, Christina L. Roland5, Jennifer A. Wargo5,21, Antoine Italiano14,16,22, 
Catherine Sautès-Fridman1,2,3, Hussein A. Tawbi23* & Wolf H. Fridman1,2,3*

Soft-tissue sarcomas represent a heterogeneous group of cancer, with more than 50 
histological subtypes1,2. The clinical presentation of patients with different subtypes 
is often atypical, and responses to therapies such as immune checkpoint blockade 
vary widely3,4. To explain this clinical variability, here we study gene expression 
profiles in 608 tumours across subtypes of soft-tissue sarcoma. We establish an 
immune-based classification on the basis of the composition of the tumour 
microenvironment and identify five distinct phenotypes: immune-low (A and B), 
immune-high (D and E), and highly vascularized (C) groups. In situ analysis of an 
independent validation cohort shows that class E was characterized by the presence 
of tertiary lymphoid structures that contain T cells and follicular dendritic cells and 
are particularly rich in B cells. B cells are the strongest prognostic factor even in the 
context of high or low CD8+ T cells and cytotoxic contents. The class-E group 
demonstrated improved survival and a high response rate to PD1 blockade with 
pembrolizumab in a phase 2 clinical trial. Together, this work confirms the immune 
subtypes in patients with soft-tissue sarcoma, and unravels the potential of B-cell-
rich tertiary lymphoid structures to guide clinical decision-making and treatments, 
which could have broader applications in other diseases.

Soft-tissue sarcomas (STSs) comprise many histological subtypes with 
distinct clinical and biological behaviours. Genetically ‘simple’ STSs are 
characterized by translocations that result in fusion proteins and few, 
if any, other genomic lesions, whereas ‘complex’ STSs have an unbal-
anced karyotype and several genomic aberrations1. STSs are considered 
‘non-immunogenic’ with a low mutational burden2. Among complex 
tumours, undifferentiated pleomorphic sarcoma (UPS), dedifferenti-
ated liposarcoma (DDLPS) and—to a lesser extent—leiomyosarcoma 
(LMS) can exhibit durable responses to immune-checkpoint blockade, 
whereas simple tumours do not respond to PD1 monotherapy or a 
combination of anti-PD1 and anti-CTLA4 antibodies3,4. Few reports 
investigating the composition of the tumour microenvironment (TME) 
in different STS histologies have been published5–7, but a recent study 

from The Cancer Genome Atlas (TCGA) consortium suggested an asso-
ciation with prognosis8.

Here, we developed a new classification of STS, based on the compo-
sition of the TME in large cohorts of STS, using the microenvironment 
cell populations (MCP)-counter method9. We found that the B lineage 
signature—a hallmark of an immune-high class we called E—correlated 
with an improved survival of patients with STS, in tumours with both 
high or low infiltration of CD8+ T cells. In an independent cohort, we 
used immunohistochemistry to validate the high density of B cells and 
presence of tertiary lymphoid structures (TLS) in class E. Finally, we 
showed that class E exhibited the highest response rate to PD1 blockade 
therapy and improved progression-free survival in a multicentre phase 
2 clinical trial of pembrolizumab in STS (SARC028)4,10.
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Immune classification of STS
The TME compositions from four independent discovery primary STS 
datasets (TCGA SARC, Gene Expression Omnibus (GEO) accessions 
GSE21050, GSE21122 and GSE30929) (Extended Data Table 1) with pub-
licly available gene expression profiles were analysed by MCP-counter, 
a gene-expression-based TME deconvolution tool9. An immune-based 
classification of STS was developed from this analysis (Extended Data 
Fig. 1, Methods) and tumours were assigned to one of five sarcoma immune 
classes (SICs), labelled A, B, C, D and E, with highly distinct profiles (Fig. 1). 

We compared the SIC distribution across histological subtypes and found 
that most LMS tumours were classified to SICs A and B (Fig. 1a). DDLPS 
accounted for half of SIC C tumours. Tumours classified as SICs D and E 
were more evenly distributed across histological subtypes. Application 
of the predictor of the immune classes (Methods) to other STS histologies 
from French Sarcoma Group (FSG) cohort (Extended Data Table 1) revealed 
that all SICs could be identified in each histology (Extended Data Fig. 2a).

The TME composition differs significantly between SICs (Fig. 1b). 
Three SICs showed homogeneous profiles. SIC A, ‘immune desert’, 
was characterized by the lowest expression of gene signatures related 
to immune cells, as well as low vasculature. SIC C, ‘vascularized’, was 
dominated by a high expression of endothelial-cell-related genes. SIC 
E, ‘immune and TLS high’, was characterized by the highest expres-
sion of genes specific to immune populations such as T cells, CD8+ 
T cells, natural killer cells and cytotoxic lymphocytes. Notably, a key 
determinant of SIC E was the high expression of the B lineage signature 
(P = 1.8 × 10−29). SICs B and D were characterized by heterogeneous but 
generally immune-low and immune-high profiles, respectively.

The expression of genes associated with T cell or myeloid cell chemo-
taxis, T cell activation and survival, major histocompatibility complex 
class I, and regulatory gene signatures was high in SICs D and E, inter-
mediate in SICs B and C, and very low in SIC A (Fig. 1c). Expression of 
the lymphoid-structures-associated B-cell-specific chemokine CXCL13 
was notably high in E tumours, moderate in D tumours, generally low 
in B and C tumours, and negligible in A tumours.

The expression of immune-checkpoint-related genes (Fig. 1d) fol-
lowed that of immune infiltrates, with high expression of the genes 
encoding PD1, PDL2, CTLA4 and TIM3 (PDCD1, PDCD1LG2, CTLA4 and 
HAVCR2, respectively) in SIC E followed by SIC D tumours, and low-to-
very-low expression in SIC C, B and A tumours. CD274 (which encodes 
PDL1) was heterogeneously expressed across SICs, whereas LAG3 was 
expressed at high levels only in SIC E tumours, and its expression was 
low in all other classes. The above findings were consistent across the 
four discovery cohorts (Extended Data Fig. 3).
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SICs are associated with patient survival
After confirmation that the two cohorts with available survival data (TCGA 
SARC, n = 213; GSE21050, n = 283) exhibited similar survival patterns (data 
not shown), the cohorts were pooled to study the clinical outcome of the five 
SICs (Fig. 2a). Patients with SIC A exhibited the shortest overall survival com-
pared with group D or E patients (P = 0.048 and P = 0.025, respectively). Simi-
larly, among the other STS histologies from the FSG cohort, patients with 
SIC A had a shorter overall survival than patients with SIC E (Extended Data 

Fig. 2b). In a multivariate model with classical prognostic factors (Fig. 2b), 
SICs were found to be significantly associated with prognosis, independent 
of other clinical parameters (as compared with SIC A; P = 0.011 and P = 0.029, 
for SICs D and E, respectively). Tumours were separated between high 
and low expression of CD8+ T cells, cytotoxic lymphocytes and B lineage 
signatures based on the observation of the MCP-counter scores distribu-
tion (Extended Data Fig. 4). Detailed analysis of the effect of these immune 
cell population signatures revealed that whereas neither CD8+ T cells  
(P = 0.277) (Fig. 2c) nor cytotoxic lymphocytes (P = 0.0513) (Extended Data 
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Fig. 5a) significantly correlated with survival, the B lineage signature was sig-
nificantly associated with improved overall survival (P = 4.25 × 10−4) (Fig. 2d). 
When analysed in the context of high or low infiltration of CD8+ T cells 
(Fig. 2e), cytotoxic lymphocytes or the expression of PDCD1 (PD1), CD274 
(PDL1) or FOXP3 (Extended Data Fig. 5b–e), the B lineage signature was the 
dominant parameter for improved survival, regardless of the expression 
of other immune factors. In addition, SIC E tumours demonstrate high 
expression of both IGJ (also known as JCHAIN) and TNFRSF17 (encoding 
BCMA) (data not shown), which indicates that plasma cells11 may contribute 
to improved prognosis.

Mutational landscape of SICs in TCGA SARC
The overall tumour mutational burden was low across the studied 
cohorts (median: 32 non-synonymous mutations) and appeared to 

be similar across all SICs (Extended Data Fig. 6a). However, a few highly 
mutated tumours (each with more than 250 non-synonymous muta-
tions) were found in the D and E groups. Qualitative mutational analysis 
revealed several commonly mutated genes across the cohort, including 
TP53 (35.2%), ATRX (16.0%), TTN (9.9%), RB1 (8.9%), MUC16 (8.0%), PCLO 
(6.1%), DNAH5, MUC17 and USH2A (5.2% each) (Extended Data Fig. 6b). 
TP53 was more frequently mutated among SICs D and E tumours  
(P = 0.01) (Extended Data Fig. 6c).

The landscape of copy-number variations, assessed on the TCGA 
SARC cohort, revealed differences between histologies, consistent with 
previous observations8. However, there was no notable difference in 
copy-number variation between SICs (data not shown).

In situ validation of SIC profiles in tumours
To validate the TME profiles of SICs in situ, we analysed an independent 
cohort of 93 STS cases (NTUH cohort) (Extended Data Table 1). Seventy-
three samples passed quality control for transcriptomic analysis using 
Nanostring nCounter technology. We classified this cohort into the same 
five SICs (Methods) with the following distribution: A, 16 (21.9%); B, 19 
(26.0%); C, 10 (13.7%); D, 17 (23.3%); and E, 11 (15.1%). The NTUH cohort 
samples exhibited gene-expression-based TME profiles that were similar 
to that of TCGA SARC and GSE21050 cohorts (Extended Data Fig. 7a).

By quantitative immunohistochemistry, immune-desert SIC A was 
characterized by very low densities of CD3+, CD8+ or CD20+ cells, 
whereas immune-and-TLS-high SIC E exhibited high densities of 
these cells (pairwise comparison, P = 4.01 × 10−6, P = 6.64 × 10−6 and 
P = 9.90 × 10−7, respectively). The vascularized SIC C exhibited a moder-
ate infiltration by immune cells and a high density of CD34+ endothelial 
cells (Extended Data Fig. 7b, c).

TLSs are a feature of SIC E tumours
The CXCL13 chemokine, which is associated with the presence of TLSs12, 
was strongly expressed in SIC E tumours (Fig. 1c, Extended Data Fig. 2c). 
Expression of CXCL13 was highly correlated with that of the TLS-associ-
ated 12-chemokine signature13 (Extended Data Fig. 8a), which suggests 
that TLSs could be a marker of SIC E. TLSs were defined as a CD20+ B-cell 
follicle juxtaposed to a CD3+ T cell aggregate containing at least one 
DC-LAMP+ (also known as LAMP3+) mature dendritic cell12,14–16 (Fig. 3a, 
left). A strong association between SICs and the presence of TLSs was 
identified (P = 3.13 × 10−6) (Fig. 3c). No TLSs were observed in tumours 
from SICs A, C and D, and only one tumour from SIC B had one TLS. 
By contrast, nine out of eleven (82%) SIC E tumours exhibited one or 
more TLS. All TLSs were intratumoural (Extended Data Fig. 8b), and 
found at the periphery and in the centre of the tumour in all histologies 
(Extended Data Fig. 8c, d).

We observed the presence of CD3+PD1+ T cells (Fig. 3a, right) in the 
germinal centre of TLSs with characteristics of follicular T helper 
cells17,18 (positive for CD4, PD1 and the CXCL13 receptor CXCR5) (Fig. 
3b, left), CD23+CD21+ cells with reticular morphology characteristic of 
follicular dendritic cells, and peripheral node addressin (PNAd)-positive 
structures with high endothelial venules morphology (Fig. 3b, right). 
Germinal centres are a hallmark of secondary follicle-like TLSs (SFL-
TLS), the final maturation step of TLS; the earlier steps being early TLSs 
(E-TLS) and primary follicle-like TLSs (PFL-TLS)15,16. E-TLS, PFL-TLS and 
SFL-TLS represented 60.5%, 21.1% and 18.3%, respectively, of all TLSs 
analysed (Extended Data Fig. 8e, f). This differed between histologies 
(P = 7.76 × 10−5), with UPS having only 16.7% of E-TLS.

Tumours with TLSs (11.8%, 11 out of 93) had significantly higher den-
sities of tumour-infiltrating CD3+ T cells (P = 4.0 × 10−5), CD8+ T cells 
(P = 1.8 × 10−4) and CD20+ B cells (P = 1.5 × 10−5) (Fig. 3d). This association 
persisted even if T and B cells within TLSs were excluded from the analy-
sis (P = 1.5 × 10−4, P = 3.8 × 10−4 and P = 7.9 × 10−7, respectively) (Fig. 3d), 
which suggests that high immune cell infiltration is not limited to TLSs.
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Fig. 4 | SICs are strongly associated with STS response to PD1 blockade 
therapy. This figure refers to the SARC028 cohort (n = 47). a, Relationship 
between SIC, histology and response to treatment in the SARC028 cohort. b, 
Waterfall plot showing the best response to pembrolizumab as a percentage 
change in the size of target lesions from baseline (n = 45). Tumour sizes were 
calculated as the sum of target lesion diameters. Colours indicate the SIC to 
which each tumour was assigned. Dashed lines indicate +20%, −30% and −100% 
change from baseline levels. SIC E versus other comparison was performed 
using a two-sided Mann–Whitney test. CR, complete response; PD, progressive 
disease; PR, partial response; SD, stable disease; SS, synovial sarcoma. c, 
Progression-free survival of patients by tumour SIC (n = 47).
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SICs predict patient response to PD1 blockade
We examined whether SICs can predict the patient response to check-
point blockade therapy. We obtained 47 pre-treatment STS metas-
tasis biopsies from patients enrolled in the SARC028 clinical trial4 
and its expansion cohort10 (Extended Data Table 1), which evaluated 
the efficacy of the anti-PD1 monoclonal antibody pembrolizumab in 
patients with metastatic STS. Of these 47 patients, 1 achieved a complete 
response, 9 a partial response, 17 stable disease and 20 had progressive 
disease (Fig. 4a). Pre-treatment tumours were classified into SICs based 
on gene-expression data. The objective response rate (ORR) (which 
accounts for complete and partial responses) as evaluated by response 
evaluation criteria in solid tumours (RECIST) criteria was 21.2% in the 
overall cohort. SICs, however, showed substantial variation in ORR, 
with SIC E patients exhibiting the highest ORR (50%, 5 out of 10), fol-
lowed by SIC D (25%, 3 out of 12) and SIC C (22%, 2 out of 9) (Fig. 4a). A 
complete response was found only in SIC E, as well as one patient who 
had a 100% change in target lesions but a non-complete response in 
non-target lesions and thus did not qualify for a complete response. 
Notably, there were no responders within the SIC A (0 out of 5) and B 
(0 out of 11) groups (Fig. 4a). Overall, SIC E tumours were associated 
with the highest response rate to pembrolizumab in comparison with 
tumours from other SICs (P = 0.026, Fig. 4b). Patients with SIC E tumours  
also exhibited improved progression-free survival compared with 
patients with SIC A or B tumours (P = 0.023 and P = 0.0069, respec-
tively) (Fig. 4c).

Discussion
This study is, to our knowledge, the most comprehensive analysis of 
the STS immune TME and the first to evaluate the prognostic effect of 
immune infiltrates by simultaneously integrating several immune cell 
populations and malignant cell characteristics. Previous studies have 
examined the immune profile of STS tumours, but the importance of B 
cells and TLSs was not investigated. The clinical effect of CD8+ T cells 
and PD1 expression has yielded controversial results7,8,19–25. Here, we 
found the CD8+ T cell signature and PD1 were expressed in class D and 
E SICs, which are associated with favourable outcomes, providing high 
infiltration of B cells. The integrative analysis demonstrates that infil-
tration by B cells is a key discriminative feature of a group of patients 
with improved survival. This B-cell-high group was found to respond 
better to PD1 blockade therapy, although this should be validated on 
a larger cohort.

The field of immuno-oncology is rapidly expanding, and is crucial 
to accurately identify patients who are likely to respond. Here, we 
propose a classification for STS that is immune-centric with prog-
nostic effect. It defines a group of patients with a better response to 
anti-PD1 therapy marked by B cells and TLSs. This finding may have 
broad applications. Sarcomas are considered immune-quiescent 
tumours, with a low mutational burden. Nevertheless, our data show 
that some STSs are immunogenic and that this is driven by B cells. 
Further work is needed to extend these findings to all STS histologies 
and other cancers. Similarly, the underlying mechanisms require 
further investigation, but a possible explanation is that TLSs are sites 
at which anti-tumoral immunity is generated, with B cells instructing 
T cells—in particular CD8+ T cells—to recognize tumour-associated 
antigens26. It is noteworthy that TLS-rich tumours are more infiltrated 
by CD8+ T cells. These T cells can become exhausted, explaining the 
correlation of the expression of immune checkpoints (such as PD1 
and LAG3) with TLSs, and why treatment with checkpoint inhibitors 
may allow productive anti-tumour immunity in TLS-rich tumours. 
Overall, our findings lay the foundation for a tool to risk-stratify 
patients with STS and identify those who may be more likely to ben-
efit from immunotherapies, and may be broadly applicable to other 
malignancies26–30.
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Methods

Ethics and patients
Patients diagnosed with DDLPS, LMS and UPS were identified and 
the pathology diagnosis was confirmed by a certified pathologist in 
National Taiwan University Hospital. The research was approved by 
the Research Ethics Committee of NTUH (201605061RINA) for this 
retrospective study. Formalin-fixed paraffin-embedded (FFPE) blocks 
were retrieved and 4–5-µm-thick slides were taken for immunohisto-
chemistry staining and RNA extraction for Nanostring testing. Other 
cohorts were previously published4,8,31–35.

Establishing the immune classification of STS
To establish a robust immune classification of STS, publicly available 
transcriptomic data from TCGA data portal and the GEO repository 
representing four large and independent patient cohorts were included. 
Only tumours from the most common histologies of genomically com-
plex STS were included: LMS, UPS and DDLPS. We analysed data from 
the TCGA SARC8 (n = 213), GSE2105031 (n = 283), GSE2112232 (n = 72) and 
GSE3092933 (n = 40) cohorts.

Public transcriptomic data pre-processing
Transcriptomic data were downloaded from the TCGA data portal (SARC 
cohort) and GEO (accessions GSE21050, GSE21122 and GSE30929). 
TCGA SARC was restricted to complex genomics sarcomas (UPS, DDLPS 
and LMS). Normalized TCGA SARC RNA-sequencing data were log2-
transformed. Microarray data were normalized using frozen-RMA 
method36 from the R package frma. Batch effect was corrected across 
series using ComBat37, with histology as covariate.

Estimation of the TME composition
The TME composition of each tumour was assessed with the MCP-
counter tool9, which provides abundance scores for eight immune 
(T cells, CD8+ T cells, cytotoxic lymphocytes, natural killer cells, B cell 
lineage, monocytic lineage, myeloid dendritic cells and neutrophils), 
and two stromal populations (endothelial cells and fibroblasts). The 
scores are based on analysis of transcriptomic markers—that is, tran-
scriptomic features that are strongly, specifically and stably expressed 
in a unique cell population. These scores are proportional to the abun-
dance of each cell population in the tumour, therefore allowing inter-
sample comparison and large cohort analyses38. The MCP-counter 
signatures composition are as follows: T cells: CD28, CD3D, CD3G, CD5, 
CD6, CHRM3-AS2, CTLA4, FLT3LG, ICOS, MAL, PBX4, SIRPG, THEMIS, 
TNFRSF25 and TRAT1; CD8+ T cells: CD8B, cytotoxic lymphocytes: CD8A, 
EOMES, FGFBP2, GNLY, KLRC3, KLRC4 and KLRD1; B lineage: BANK1, 
CD19, CD22, CD79A, CR2, FCRL2, IGKC, MS4A1 and PAX5; natural killer 
cells: CD160, KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DS1, NCR1, 
PTGDR and SH2D1B; monocytic lineage: ADAP2, CSF1R, FPR3, KYNU, 
PLA2G7, RASSF4 and TFEC; myeloid dendritic cells: CD1A, CD1B, CD1E, 
CLEC10A, CLIC2 and WFDC21P; neutrophils: CA4, CEACAM3, CXCR1, 
CXCR2, CYP4F3, FCGR3B, HAL, KCNJ15, MEGF9, SLC25A37, STEAP4, 
TECPR2, TLE3, TNFRSF10C and VNN3; endothelial cells: ACVRL1, APLN, 
BCL6B, BMP6, BMX, CDH5, CLEC14A, CXorf36 (also known as DIPK2B), 
EDN1, ELTD1, EMCN, ESAM, ESM1, FAM124B, HECW2, HHIP, KDR, MMRN1, 
MMRN2, MYCT1, PALMD, PEAR1, PGF, PLXNA2, PTPRB, ROBO4, SDPR, 
SHANK3, SHE, TEK, TIE1, VEPH1 and VWF.

Intracohort immune classifications
The fibroblasts signature was removed from this analysis as all STS 
tumours exhibited high and homogeneous scores for this cell popu-
lation, which is consistent with the mesenchymal origin of STS. The 
signature for CD8 T cells was removed from the analysis for GSE21050, 
GSE21122 and GSE30929 as it showed very small variation across all 
samples in these microarray-based cohorts. Unsupervised cluster-
ing of samples in each cohort was performed based on the metagene 

Z-score for the included populations of MCP-counter (Extended Data 
Fig. 9a–d) using R software, with the Euclidian distance and Ward’s 
linkage criterion, using the gplots package. The TCGA SARC, GSE21050, 
GSE21122 and GSE30929 cohorts were separated into 6, 9, 7 and 6 
groups, respectively. The number of clusters was chosen empirically 
following the dendrograms shown in Extended Data Fig. 9a–d. Analysis 
of the intersample variance revealed that much of the explainable vari-
ance was already attained at the chosen number of clusters as visualized 
in Extended Data Fig. 9e–h.

Pan-cohort immune classes
To aggregate the above four intracohort classifications, the transcrip-
tome matrix of each cohort was independently zero-centred for each 
gene across all samples. Then, we computed the centroids of each class 
over the whole transcriptome and analysed the Pearson correlations 
between all the centroids on the set of genes shared across the four 
cohorts (Extended Data Fig. 9i). From these correlations, we deduced 
five SICs. The tumours from six remaining cohort-specific clusters 
shared intermediate/weak correlation patterns to other clusters and 
were temporarily labelled as ‘unclassified’.

Prediction of the immune classes
Centroids of SICs were computed on MCP-counter intraseries Z-scores 
for T cells, cytotoxic lymphocytes, B cell lineage, natural killer cells, 
monocytic lineage, myeloid dendritic cells, neutrophils and endothelial 
cells, on all cohorts. To predict de novo the immune classes of each of 
the cohorts, MCP-counter Z-scores were computed, and each sample 
was assigned to the closest immune class based on its Euclidian distance 
to the related centroids. The SICs labels used are the ones predicted 
using this method. Principal component analysis of the 608 samples 
on the MCP-counter scores shows that the intra-SIC homogeneity was 
improved by this prediction step (Extended Data Fig. 9j, k), as confirmed 
by supervised tests across SICs (Extended Data Fig. 9l, m).

Gene signatures for the functional orientation
The signatures used to determine the functional orientation of the TME 
were derived from the literature39. The signatures were the following: 
immunosuppression (CXCL12, TGFB1, TGFB3 and LGALS1), T cell activa-
tion (CXCL9, CXCL10, CXCL16, IFNG and IL15), T cell survival (CD70 and 
CD27), regulatory T cells (FOXP3 and TNFRSF18), major histocompat-
ibility complex class I (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G and 
B2M), myeloid cell chemotaxis (CCL2), and tertiary lymphoid structures 
(CXCL13). For each signature, scores were computed as the geometric 
mean signature expression.

De novo prediction of the immune classes of additional cohorts 
and other platforms
The predictor described above was adapted to analyse new and inde-
pendent samples, from Nanostring-analysed FFPE samples. In a first 
step, SICs were estimated on the NTUH cohort by sorting samples on 
the B lineage signature, T cells signature then endothelial cell signature 
and assigning each sample according to the SIC it resembled the most. 
Similar to as described above, centroids of each SIC on Nanostring data 
MCP-counter scores Z-scores were computed and samples were reas-
signed to the SIC they were closest to the centroid of. For new samples 
from the SARC028 cohort, MCP-counter scores for T cells, cytotoxic 
lymphocytes, B lineage and endothelial cells were computed and trans-
formed as Z-scores. Distances with Nanostring-defined centroids pre-
sented above were computed with Euclidian metric, and samples were 
assigned to the SIC with the lowest distance.

RNA extraction from FFPE tumours
Human FFPE tumour specimens were cut into 3-µm-thick sections and 
were reviewed under microscope for tumour histology. Non-tumour 
tissues were excluded and tumour tissues were deparaffinized by 
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deparaffinization solution (Qiagen 19093) and RNA were extracted 
by RNeasy FFPE kit (Qiagen 73504) according to the manufacturer’s pro-
tocol. RNA quality and size distribution were determined by the Agilent 
2100 Bioanalyzer with RNA analysis kits (RNA 6000 nano kit 5067-1511, 
RNA 6000 nano reagent 5067-1512, RNA 6000 nano ladder 5067-1529, 
RNA 6000 pico kit 5067-1513, RNA 6000 pico reagents 5067-1514, RNA 
6000 pico ladder 5067-1535) for cohorts NTUH core and NTUH whole, 
and by the Agilent RNA ScreenTape assay (catalogue: RNA ScreenTape 
5067-5576, RNA ScreenTape sample buffer 5067-5577, RNA ScreenTape 
ladder 5067-5578) and Agilent 2200 TapeStation for cohort SARC028. 
The samples from SAR028 were separately quality-controlled by the 
sarcoma pathology group at MD Anderson Cancer Center.

Nanostring nCounter analysis
The RNA was analysed using the nCounter Technology (Nanostring 
Technologies) as per the manufacturer’s protocol. Data were normal-
ized using the nSolver software (Nanostring Technologies).

Enzymatic and fluorescent multiplexed immunohistochemistry
The FFPE human tumour and control specimens were cut into 
3-µm-thick sections. Human FFPE tonsil sections were used as posi-
tive controls for CD3, CD4, CD8, CD20, CD21, CD23, CD34, CXCR5, 
DC-LAMP, PD1, PDL1 and PNAd, placenta sections were used in addition 
for PDL1 and cerebral cortex tissue was used as a negative control. The 
specificity of all antibodies was tested by the manufacturers and the 
specificity of anti-PD1 antibodies was validated in our laboratory on 
overexpressing cells pellets as previously reported40. Antigen retrieval 
was carried out on a PT-link (Dako) using the EnVision FLEX Target 
Retrieval Solutions at High pH (Dako, K8004) or Low pH (Dako, K8005). 
Endogenous peroxidase activity and non-specific Fc receptor binding 
were blocked with H2O2 3% (Gifrer, 10603051) and Protein Block (Dako, 
X0909) respectively. The primary and secondary antibodies used for 
immunohistochemistry and immunofluorescence are summarized in 
Extended Data Table 2. Immunohistochemistry and immunofluores-
cence images were independently analysed blindly by three observers 
(L.L., C.S.-F. and G.L.).

Enzymatic immunohistochemistry
The stainings were performed with an Autostainer Link 48 (Dako). Chro-
mogenic detection was performed using 3,3′-diaminobenzidine (Dako, 
K3468) for CD8, CD20, CD21, PDL1 and PNAd; 3-amino-9-ethylcarbazole 
substrate (Vector Laboratories, SK-4200) for DC-LAMP; Blue Alkaline 
Phosphatase Substrate (Vector Laboratories, SK5300) for CD3; High-
Def red IHC chromogen (AP) (Enzo, ADI-950-140-0030) for CD20; and 
Permanent HRP Green (Zytomed Systems, ZUC070-100) for CD23 and 
CD34. The nuclei were counterstained with haematoxylin (Dako, S3301). 
After mounting with Glycergel Mounting Medium (Dako, C056330-2) 
or EcoMount (Biocare Medical, EM897L), the slides were scanned with 
a Nanozoomer (Hamamatsu). For CD3, CD8, CD20 and DC-LAMP mark-
ers, the density of positive cells per mm2 was quantified with Calopix 
Software (Tribvn). For CD34 marker, the density of positive vessels per 
mm2 was quantified with Halo10 software (Indica labs). TLS were identi-
fied using the registration module to fit one slide on the other (Halo10 
software, Indica labs). Tumours were considered TLS-positive when a 
CD3 aggregate with DC-LAMP staining was found juxtaposing a CD20 
aggregate. Only aggregates with surface above 60,000 µm2, containing 
at least 700 cells and at least 350 CD20+ cells were considered.

Fluorescent multiplexed immunohistochemistry
For the PD1, CD20 and CD3 3-plex staining, a tyramide system ampli-
fication (TSA) was used. The stainings were performed with a Leica 
Bond RX. The incubation with TSA reagent was performed after the 
incubation of the horseradish peroxidase (HRP)-conjugated polymer 
and was followed by antibody stripping at 97 °C for 10 min. This pro-
tocol was repeated for the second and third primary antibodies and 

corresponding polymer incubations. The dilutions used for the TSA are 
1:400 for TSA AF488, 1:800 for TSA AF594 and 1:200 for TSA AF647, as 
per the manufacturer’s recommendations. For the CXCR5, CD4 and PD1 
3-plex staining, we used a conventional fluorescent-dye conjugated sec-
ondary antibody system performed manually (all secondary antibodies 
were diluted at 1:100). For all the fluorescent stainings, the nuclei were 
stained with DAPI Solution (Thermo Fisher, 62248) at 2 µg ml−1 for 10 
min. After mounting with ProLongTM Gold Antifade Mountant (Ther-
mofisher, P36934), the slides were scanned with a Zeiss Axio Scan.Z1.

Statistical analysis
All statistical analyses were performed using the R software (v.3.4.4) 
and the packages survival, gplots, dunn.test and FactoMineR. The rela-
tionship between two categorical variables was estimated with the 
chi-squared test. The relationship between a categorical variable and 
a quantitative variable was estimated with the Mann–Whitney U test 
(two categories) or the Kruskall–Wallis test (three or more categories). 
All tests were two-sided. In cases with three or more categories, pair-
wise comparisons were carried out with Dunn tests. The relationship 
between two quantitative variables was estimated with the Pearson 
correlation. When appropriate, P values were corrected for multiple 
hypothesis testing with the Bonferroni or Benjamini–Hochberg meth-
ods, as specified in the text or figure legends. Survival was analysed 
with Kaplan–Meier estimates and log-rank tests. No statistical methods 
were used to predetermine sample size. The experiments were not 
randomized, and investigators were not blinded to allocation during 
experiments and outcome assessment unless stated otherwise.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The transcriptomic datasets analysed in this study can be accessed on the 
GDC Portal (portal.gdc.cancer.gov, cohort TCGA SARC) and the GEO reposi-
tory under accession numbers GSE21050, GSE21122 and GSE30929. FSG 
cohort data are publicly available from ArrayExpress for gastrointestinal 
stromal tumour with accession code E-MTAB-373, and from the GEO for 
synovial sarcomas with accession number GSE40021. Myxoid liposarcomas 
from the FSG cohort are available from the corresponding authors upon 
reasonable request. Immunohistochemistry and gene expression data 
related to the NTUH cohort (Fig. 3, Extended Data Figs. 7, 8) are available 
upon reasonable request to W.H.F. (herve.fridman@crc.jussieu.fr). The 
data that support the findings related to Fig. 4 are available from SARC but 
restrictions apply to the availability of these data, which were used under 
license for the study. Data are, however, available from H.A.T. (htawbi@
mdanderson.org) upon reasonable request and with permission of SARC.

Code availability
All code used in this study is available from the corresponding author 
upon reasonable request.
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Extended Data Fig. 1 | Diagram of analytic workflow. The drawing of the syringe in the bottom left corner originates from Servier Medical Art (https://smart.
servier.com), and is distributed under a CC-BY 3.0 Attribution license (https://creativecommons.org/licenses/by/3.0/).



Extended Data Fig. 2 | SICs in various STS histologies. a, Repartition of the 
SICs in various histologies of TCGA SARC and GSE21050 (LMS, UPS and DDLPS), 
and FSG cohort (synovial sarcoma, myxoid liposarcoma, gastrointestinal 
stromal tumour (GIST)). b, Survival of patients from the FSG cohort (n = 136) 

according to SIC classification. Patients with synovial sarcoma, myxoid 
liposarcoma and gastrointestinal stromal tumour were pooled. Analysis was 
performed with Kaplan–Meier estimates and two-sided log-rank tests.
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Extended Data Fig. 3 | The SICs exhibit strongly different TMEs. This figure 
refers to the GSE21050 cohort (n = 283). a, Composition of the GSE21050 
cohort by SIC, histology and site of disease. b, Composition of the TME by SIC 
as defined by the MCP-counter Z-scores. c, Expression of gene signatures 
related to the functional orientation of the immune TME by SIC. d, Expression 

of genes related to immune checkpoints by SIC. Adjusted P values are obtained 
from Benjamini–Hochberg correction of two-sided Kruskal–Wallis test P 
values. These observations stand for cohorts GSE21122 and GSE30929 (not 
shown).



Extended Data Fig. 4 | Distribution of MCP-counter scores. a–e, MCP-counter 
scores in TCGA SARC (n = 213) (a, c, e) and GSE21050 (n = 283) (b, d, e), for CD8+ 
T cells (a, b), cytotoxic lymphocytes (c, d) and B lineage cells (e, f). The blue line 
indicates the density curve. The red dotted line indicates the cut-off chosen to 
segregate high or low values, set at the median for CD8+ T cells and at the third 

quartile for cytotoxic lymphocytes and B lineage, in each cohort. These values 
were chosen because the CD8 T cells scores present a normal distribution, 
whereas the cytotoxic lymphocytes and B lineage scores distribution exhibit a 
long right tail.
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Extended Data Fig. 5 | B cell infiltration of STS is the key factor associated 
with overall survival. This figure refers to TCGA SARC and GSE21050 pooled 
cohorts (n = 496). a, Overall survival of patients with STS according to MCP-
counter scores for cytotoxic lymphocytes. b, Overall survival of patients based 
on the infiltration level of their tumours by B lineage cells and cytotoxic 
lymphocytes. c–e, Overall survival of patients based on degree of tumour 

infiltration by B lineage cells and expression of PDCD1 (c), CD274 (d) and FOXP3 
(e). The analyses were performed with the Kaplan–Meier estimates and two-
sided log-rank tests. Tumours were considered high for expression of PDCD1, 
CD274 and FOXP3 if their expression was above median, and high for B lineage 
and cytotoxic lymphocytes if the MCP-counter score was above the third 
quartile.



Extended Data Fig. 6 | The mutational landscape of STS tumours does not 
vary significantly between SICs. This figure refers to the TCGA SARC cohort 
(n = 213). a, Mutational burden according to the SIC of the tumours, expressed 
in number of non-silent mutations. P value was computed with a Kruskal–Wallis 
test. Box plots as in Fig. 3d. b, Mutation frequency of all genes that are mutated 
in greater than 2.5% of tumours. c, Mutation frequency for genes that are 
mutated in more than 5% of tumours, according to SICs in the TCGA SARC 

cohort. The dashed lines indicate the overall mutation frequency. P values were 
obtained through one-sample two-sided t-tests, corrected for multiple testing 
with the Bonferroni method. This was applied only to samples that had 
mutations on the considered genes (TP53: n = 75; ATRX: n = 34; TTN: n = 21; RB1: 
n = 19; MUC16, n = 17; PCLO, n = 13; DNAH5, MUC17 and USH2A: n = 11, PTEN, n = 6; 
KRAS, n = 2; BRAF, n = 1).
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Extended Data Fig. 7 | Validation of SIC profiles by immunohistochemistry. 
This figure refers to the NTUH cohort. a, SIC attribution as defined by gene 
expression using the MCP-counter Z-scores in 73 cases. b, Cell density counts 
showing the differences in TME composition according to SIC identification of 
the 73 cases (SIC A: n = 16; SIC C: n = 10; SIC E: n = 11). P values are determined by 
two-sided Kruskal–Wallis (KW) tests. Pairwise comparisons are derived from 

the Dunn test. Box plots are as in Fig. 3d. c, Representative images of CD3 
(green), CD20 (pink), CD8 (brown) and CD34 (green) expression by 
immunohistochemistry of SIC A, C and E tumours. The same area of the tumour 
is represented (0.05 mm2) in each image. Similar results were observed on the 
other tumours from the same SICs (SIC A: n = 16; SIC C: n = 10; SIC E: n = 11).



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Location and maturation of TLSs. a, Pearson 
correlation between the expression of CXCL13 and the 12-chemokine signature 
of TLS in TCGA SARC cohort (n = 213). Samples are coloured according to SICs. 
b, Intratumoural location of TLSs in three different examples from the NTUH 
cohort—DDLPS, UPS and LMS, respectively. TLSs are observed by the presence 
of CD20+ B cells aggregates (brown, surrounded by blue shapes). The red line 
delineates the tumoral zone. Similar findings were observed on the 11 tumours 
with TLS. c, Definition of peripheral, medium and central zones, accounting for 
25%, 25% and 50% of the total tumour area, respectively. d, Distribution of TLSs 
in the various zones. Each bar represents one tumour. The letters above bars 
indicate the SIC of the tumour when the sample passed quality control of 
Nanostring nCounter hybridization. Dots indicate tumours in which SIC could 
not be determined because of RNA quality control. Similar images were 
observed for 66 E-TLS, 23 PFL-TLS and 20 SFL-TLS. e, Illustration of diverse 

degrees of TLS maturation in STS tumours. Consistent with maturation events 
occurring in secondary lymphoid organs, three maturation steps have been 
described for TLS: E-TLS (bottom), PFL-TLS (middle) and SFL-TLS (top), which 
differ in the presence of follicular dendritic cells (FDC) and their markers. E-TLS 
contain aggregates of CD20+ B cells and CD3+ T cells without FDC, PFL-TLS 
contain CD21+ FDC (red dotted zones) and SFL-TLS contain a germinal centre, 
notably visible through the presence of CD21+CD23+ follicular dendritic cells 
(yellow dotted zone). DAPI staining is shown in white. DAPI-negative green dots 
correspond to fluorescent erythrocytes. f, Distribution of TLS maturation 
steps in a subset of tumours. Each bar represents one tumour. Differences 
between the number of TLSs observed here and in other figures can be 
explained by use of non-consecutive slides or a different tumour block for 
some samples.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Pan-cohort immune classification. This figure refers to 
the four discovery cohorts: TCGA SARC (n = 213), GSE21050 (n = 283), GSE21122 
(n = 72) and GSE30929 (n = 40). a–d, Heat map and unsupervised hierarchical 
clustering of the MCP-counter scores describing the tumour 
microenvironment. Each of the population is represented by the Z-scores of the 
signature. a, TCGA SARC. b, GSE21050. c, GSE21122. d, GSE30929. e–h, 
Evolution of the variance explained by the clusters as a function of the number 
of clusters. Red dots indicate the number of clusters that was retained in this 
study. Each graph corresponds to the heat map on its left. i, Heat map of the 

Pearson correlation of centroids from each SIC class of discovery cohorts 
(TCGA SARC, GSE21050, GSE21122 and GSE30929, n = 608), with five immune 
classes and two groups of unclassified samples. j, k, Principal component 
analysis of samples from the four discovery cohorts (n = 608), based on their 
normalized and merged MCP-counter scores. j is coloured according to the 
original classes, k is coloured according to the predicted immune classes, 
showing a heightened homogeneity within each SIC class. l, m, Composition of 
the TME with classes defined as in j and k for the four discovery cohorts 
(n = 608), expressed in cohort-specific row Z-scores.



Extended Data Table 1 | Clinicopathological composition of the cohorts included in this study

For cohort GSE21050, sex information could not be retrieved for 14 patients. For cohort NTUH, SIC could be determined for 73 patients only. NA, not available.
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Extended Data Table 2 | Antibodies used for immunohistochemistry and immunofluorescence
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Immunohistochemistry images were analysed with HALO 10 software (IndicaLab). Immunofluorescence data were obtained with 
AxioScan (Zeiss)

Data analysis Data was analysed with R software (version 3.4.4) and packages gplots, survival and FactoMineR. Custom code was produced in R for the 
analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The transcriptomic datasets analysed in this study can be accessed on the GDC Portal (TCGA SARC) and the Gene Expression Omnibus repository (accession 
numbers GSE21050, GSE21122, GSE30929). Immunohistochemistry, gene expression and clinical-related to NTUH cohorts (Fig. 3, Extended Data Figs. 7 and 8) are 
available from the corresponding author on reasonable request. The data that support the findings related to Fig. 4 are available from SARC but restrictions apply to 
the availability of these data, which were used under license for the study. Data are however available upon reasonable request to HAT (HTawbi@mdanderson.org) 
and with permission of SARC. All code used in this study is available from the authors upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size TCGA SARC: n=213, GSE21050: n=283, GSE21122: n=72, GSE30929: n=40, FSG: n=168, NTUH n=93, SARC028: n=47. Total: n=916.

Data exclusions 20 tumours from the NTUH cohort were excluded from gene expression (end SIC) analysis due to low quality of the extracted RNA.

Replication No replication was done, but validation cohorts were analysed.

Randomization Randomization is only relevant to the SARC028 cohort, which was previously published.

Blinding All image and data analysis were performed blindly, independently of sample knowledge.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used CD3: 2GV6, Roche ; DC-Lamp: 1010E1.01, Dendritics ; CD20: L26, AGilent ; CD8: C8/144B, Agilent ; CD21 : 1F8, Agilent ; CD23 : 

SP23, Abcam; CD34: Qbend-10, Agilent ; PD-L1: E1L3N, Cell Signaling ; PD-1: EH33,  CoStim Pharmaceuticals ; .

Validation The specificity of anti-CD3, anti-CD4, anti-CD8, anti-CD20, anti-CD21, anti-CD23, anti-CD34, anti-CXCR5 and anti-DC-Lamp 
antibodies, and MECA-79 (PNAd) was  validated on FFPE tonsil sections as positive control.  For anti-CD20, certified 
manufacturing facilities from the company guarantee full quality control including western blot and studies using COS-1 cells 
transfected with cDNA encoding the CD20 molecule indicate that the antibody labels an intracytoplasmic epitope localized on 
the CD20 molecule. For anti-CD8, certified manufacturing facilities from the company guarantee full quality control including 
western blot and indicate that the antibody recognizes the cd8alpha chain. For anti-CD34, certified manufacturing facilities from 
the company guarantee full quality control. For anti-CD21, certified manufacturing facilities from the company guarantee full 
quality control including western blotting of the immunogen, and that the antibody labels cells or cell lines known to express 
CD21 (Raji, NC 37, tonsil cells), whereas no labeling is observed in the CD21-negative Jurkat cells (T-cell line) and human 
erythrocytes. For anti-CD23, certified manufacturing facilities from the company guarantee full quality control including western 
blotting, IHC on human tonsils and flow cytometry on Raji cells. For anti-CXCR5, certified manusfacturing facilities from the 
company guarantee full quality control using human CXCR5 transfectants by flow cytometry and lack of cross reactivity with 
human CXCR2, CXCR3, or CXCR4 transfectants. For PNAd, certified manufacturing facilities from the company guarantee full 
quality control including western blotting, IHC and flow cytometry. For anti-PD-L1, specificity was validated by the company using 
immunohistochemical analysis of paraffin-embedded human placenta using PD-L1 (E1L3N®) XP® Rabbit mAb in the presence of 
control peptide or antigen-specific peptide. Specificity was verified by using FPE sections from placenta  as positive control and 
cerebral cortex tissue as negative control. Anti-PD-1 (Freeman GJ and col.)  was obtained from CoStim Pharmaceuticals and 
validated as described in Fig. S1 of Giraldo et al., Clinical Cancer Research, 2015. Tonsil, placenta and cerebral cortex slides were 
obtained from Geneticist Inc.
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Human research participants
Policy information about studies involving human research participants

Population characteristics All available characteristics are reported in Extended Data Table 1.

Recruitment Patients were recruited prior to the study and were not selected on specific criteria other than their pathology.

Ethics oversight The research was approved by the Research Ethics Committee of NTUH (201605061RINA).

Note that full information on the approval of the study protocol must also be provided in the manuscript.


